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On the sound radiated by a turbulent bubbly flow

L. VAN WIJNGAARDEN
J.M. Burgers Center for Fluid Dynamics, University of Twente, P.O. Box 217, 7500 AE Enschede,
The Netherlands

Received 4 July 1997; accepted in revised form 21 January 1998

Abstract. In this paper the sound emitted by a turbulent bubbly liquid is investigated, in particular for very dilute
mixtures. The results are compared with those obtained by previous investigators, and with available experimental
results.
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1. Introduction

The theory of sound emitted by a turbulent flow was initiated by Lighthill [1] in a celebrated
paper in which he showed that, at distancex from the centre of a turbulent flow of densityρ,
Mach numberM and linear dimensionL, with turbulence of r.m.s. fluctuationu and integral
scalel, the emitted acoustic intensityI satisfies,

x2I ∼ (ρuU2L2)M5
( u
U

)5 L

l
. (1.1)

The Mach number is the mean velocityU divided by the sound velocityc of the undis-
turbed medium in which the observation pointx is located.

Since the total available mechanical power in the turbulent flow isρuU2L2, the fractionη
of this, radiated as sound through a surface containing the observation pointx, is

η = M5
( u
U

)5 L

l
. (1.2)

In the original paper [1] no explicit distinction was made betweenU andu, and then (1.1)
shows Lighthill’s famous result that the radiated sound and efficiency are proportional to
U8 andM5. Since usually the Mach number of a turbulent flow is small, the efficiency of
turbulence as a source of sound is small.

Crighton and Ffowcs Williams [2], henceforth denoted with CW, investigated how this
is affected by the presence of small air bubbles in the turbulent region, in case the fluid is
water. This is of great interest for underwater sound propagation, since in the upper layer
of the oceans bubbles occur due to mixing with adjacent air, as a result of wave breaking.
They found, by calculation, that the presence of bubbles increases the efficiency as a source
of sound with a factor(c/cm)4 wherecm is the speed of sound in a bubbly liquid. Later, the
same problem was studied theoretically by Prosperetti [3] and by Crightonet. al. [4], along
slightly different lines. In Section 2 we shall briefly discuss these derivations and conclude that
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the mentioned increase of radiation efficiency holds good when the average distance between
bubbles is small with respect to the integral scalel of the turbulence.

In the upper level of the oceans the gas concentration by volume, which we indicate withα,
is often less that 10−4. The gas concentration is also indicated as void fraction and is connected
with the number densityn and the average bubble radiusa by

α = 4
3πna

3. (1.3)

With a bubble radius of 10−3 m and a void fraction of 10−4, the average distance between
bubbles is about 3 cm. In the intense turbulence in breaking waves this is often comparable
with the integral scale. Prosperetti [3], for example, takes for this 0·1 m.

Under such conditions, regarding each bubble as if radiating into an effective medium with
sound velocityc, is not an appropriate model. Another way of looking at the problem is to
start with the exact expression forcm,

c−2
m = c−2(1− α)2+ c−2

g α
2+ α(1− α)ρ/p. (1.4)

Herecg is the sound velocity in the gas phase andp is the pressure. Forα → 0, this gives, if
we assumeρc2/p to be large with respect to unity:

c2/c2
m = 1+ αρc2/p. (1.5)

This shows that, in agreement with the general theory of nonhomogeneous fluids (seee.g.
Batchelor [5]), the first correction on the speed of sound produced by the bubbles is of orderα.
In the theory of CW, it is assumed thatαρc2/p is large with respect to one. Thenc2

m = p/αρ
and the factorη mentioned above, with which CW find the emitted sound intensity to be
multiplied with respect to the single fluid case, is proportional toα2. This indicates already
interaction between the bubbles, exemplified in the effective medium model. In this paper we
search for a contribution of orderα, valid when bubbles are so far apart that their interaction
is negligible. However, their distance is no longer small with respect to the integral scale of
the turbulence.

In Section 3 we make this calculation and in Section 4 we discuss another contribution to
the emitted sound of the same order,viz. that which is produced by the interaction between
the pressure fluctuations of the unperturbed (by the presence of the bubbles) turbulence and
velocity fluctuations caused by the volume oscillations of the bubbles.

2. Sound radiated from a region with a moderately large bubble concentration

We start with the original equation given in [1] for a single phase turbulent flow. The density
fluctuation obeys

∂2ρ

∂t2
− c2∇2ρ = ∂2

∂xi∂xj
{ρuiuj + [(p − p0)− c2(ρ − ρ0)]δij }. (2.1)

Hereδij is the Kronecker delta and−ρuiuj the instantaneous Reynolds stresses, which are
large with respect to the viscous stresses. Outside the turbulent region the Reynolds stresses
are zero and the pressure perturbationp−p0 equalsc2(ρ− ρ0), so that the right-hand side of
(2.1) vanishes there. Crightonet al. [4] define

ρe = (ρ − ρ0)− (p − p0)/c
2 (2.2)
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and convert (2.1) into

c−2 ∂
2

∂t2
(p − p0)−∇2(p − p0) = ∂2

∂xi∂xj
(ρuiuj )− ∂

2ρe

∂t2
. (2.3)

Next we consider bubbles to be introduced into the turbulent region, with concentrationα

by volume.

(i) CW.
The equation of mass conservation for the fluid becomes

∂ρ

∂t
+ ∂

∂x
(ρu) = Q, (2.4)

whereQ is a source of mass of magnitude

Q = −ρ D

Dt
(1− α) = ρ D

Dt
α. (2.5)

This leads to a ‘Lighthill Equation’ for the fluid with an extra term at the right-hand side:

∂2ρ

∂t2
− c2∇2ρ = ∂Q

∂t
+ ∂2

∂xi∂xj
{ρuiuj + [(p − p0)− c2(ρ − ρ0)]δij }. (2.6)

The formulation (2.4)–(2.6) implies an averaging over a region containing many bubbles.
This region must have a linear dimension small with respect to macroscopic lengths such as
L and l, but large with respect to the inter-bubble distancen−1/3. The averaging must be an
ensemble averaging, the ensemble consisting of all possible configurations of a large number
of bubbles in the volume on the mesoscale. As is well known (seee.g. [5]) the calculation
of multiple interactions beyond pair interactions meets with great difficulties and therefore
approximations have to be made. In the present case it is as if there were locally in the liquid
a volume source produced by fluctuations in the volume of all the bubbles in the considered
portion of the liquid together. In CW it is shown that in (2.6) the term with the rate of change
of Q is the most important one. Under the assumption of isothermal behaviour this can be
written as−c−2

m
∂
∂t

Dp
Dt and herewith (2.6) becomes:

∂2ρ

∂t2
− c2∇2ρ = −c−2

m

∂

∂t

Dp

Dt
, (2.7)

where the right-hand side is to be evaluated inside the two-phase region.
By analysis of the solution of this equation CW, show that the sound intensity atx is now

given by

x2I ∼ 1

4π
(ρuU2L2)

( u
U

)5
M5

(
c

cm

)4
L

l
(2.8)

Comparison with (1.1) shows that the intensity has increased with a factor of magnitude
(c/cm)

4, which, as they point out, can be as large as 107. They denote as efficiency the fraction
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of the total power radiated through a sphere of radiusx, i.e. the quantityη given in (1.2) for
the single-phase case. With bubbles, this efficiency is therefore

η =
( u
U

)5
M5

(
c

cm

)4
L

l
. (2.9)

(ii) Crighton et al. [4]. These authors write for∂ρe/∂t inside the two phase region, using
(2.2) and the equations of motion,

∂ρe

∂t
= − l

c2

[{
1− ρc2

ρmc
2
m

}
Dp

Dt
− p − p0

ρ

Dρm
Dt

]
, (2.10)

whereρm denotes the density in the two-phase flow. Substituting this in (2.3), they obtain
subsequently for the pressure perturbation:

c−2∂
2p

∂t2
−∇2p = ∂2

∂xi∂xj
ρuiuj + c−2 ∂

∂t

[{
1− ρc2

ρmc2
m

}
Dp

Dt
− p − p0

ρm

Dρm
Dt

]
. (2.11)

Again, the term containing the factorc2/c2
m is dominant and the resulting equation is within

the accuracy of the approximation equivalent with (2.7).
This derivation clearly shows the bubbly region as a fictitious medium with sound velocity

cm in which there is a continuous distribution of monopoles.

(iii) Prosperetti [3]. This author follows basically the same route as in [4]. He starts by
writing down the Lighthill equation (2.1) and observes directly that inside the bubbly turbulent
regionp−p0 is not equal toc2(ρ− ρ0) but rather to(dp/dρ)s(ρ− ρ0), which isc2

m(ρ− ρ0).
This leads after some manipulation to transform the double space derivative into a double time
derivative again to an equation of the type (2.7). Incidentally, it is interesting that Prosperetti
[3] stresses the monopole character of the sound produced by the bubbles (he deals with a free
surface and then it becomes dipole sound), whereas CW, in discussing (2.8) write ‘The depen-
dence ofI onM is rather surprising being characteristic of quadrupole rather than monopole
sources. It is less surprising if we remember that it was noted that the whole problem could
be tackled using a quadrupole type of source only. The monopoleQ is equivalent, in part, to
∂/∂t (p − ρc2), a quadrupole time derivative which would occur in this alternative treatment,
p andρ now both referring to the two-phase mixture’. The alternative treatment, mentioned
in this quotation, is in fact given in Prosperetti [3], who, however, considers it as monopole
sound. The present author tends to side with Prosperetti here. Obviously, the dependence on
the Mach number isM−4, the dependence onc is, however, asc−1 due to the factor(c/cm)4.
The dependence onc is typical for monopole sources. The monopole character will become
even more clear in the next section where we consider the case of very small values ofα, to
be precise, of such small values that the inter bubble distancen−1/3 is not necessarily small
with respect to the integral scalel of the turbulence.

3. Sound radiated from a dilute turbulent bubbly flow

We consider a large volume of linear dimensionL, occupied by a turbulent flow in which
bubbles are dispersed. The bubbles are spherical, radiusa, and randomly dispersed in the
fluid. Let us assume that there areN bubbles in the volume. We want to know the sound
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Figure 1. The sphere of radiusL contains turbulent fluid and in addition air bubbles. Sound is radiated and
measured inx.

intensity observed in a pointx located outside the volume (see Figure 1), where the fluid is
neither turbulent nor bubbly. As we have seen, in the absence of bubbles this leads to (1.1).
We are interested in the additional intensity inx due to bubbles. We assume that these are so
small that the turbulent pressure fluctuationp′ − p0 is uniform over the surface of a bubble.
Each bubble performs volume oscillations as a result of the turbulence and radiates sound.
Let in x(p − p0) be the pressure perturbation andv · e the velocity in the directione. Then
the intensity is(p − p0)v · e. In the problem, there are two types of fluctuation. The first is
due to the turbulence, and we shall indicate averaging over the turbulent time scale with an
overbar, in the case of the intensity(p − p0)v · e. Next, there are the fluctuations caused by
the fluctuating positions of the bubbles.

A configuration of theN bubbles is indicated withCN . The probability density of such
a configuration is, say,F(CN). The average over all possible configurations is the ensemble
average, which we indicate with〈 〉. Using these definitions we have,

I =
∫
{(p − p0)v · e}F(CN)dCN = 〈 (p − p0)v · e〉. (3.1)

It is well known (seee.g. [5]) that in the lowest approximation in the volume concentration
α each configuration consists of only one bubble. Let the position of the centre of this be
r. Then the ensemble averaging means averaging overr. We start therefore with calculating
(p − p0)v · eat x due to a bubble atr.

The oscillating bubble is a monopole source of strengthm, say, with acoustic potential
induced atx,

ϕ = −m
(
t − |x− r |

c

)/
4π |x− r |. (3.2)

The strengthm is related to the turbulent pressure fluctuation in the following way. The
compression and expansion of the bubble is, to a good approximation, adiabatic, [6], and
we have,a0 being the undisturbed radius of the bubble,

(a/a0)
−3γ = p′/p0 (3.3)

whereγ is the ratio of specific heats in the gas.



50 L. Van Wijngaarden

Linearization with respect toa0 andp0 gives

m = 4πa2
0

da

dt
= −4π

(
a3

0

3γp0

)
D

Dt
(p′ − p0). (3.4)

We denote the quantitya3
0/3γp0 byK, and the time derivative of(p′ − p0) by Ṗ ,

a3
0

3γp0
= K (3.5)

D

Dt
(p′ − p0) = Ṗ . (3.6)

Further we may neglecta with respect tox andr and we shall in the following make the
abbreviation

s = |x− r |. (3.7)

Introducing (3.4)–(3.7) into (3.2), we have

ϕ = KṖ (t − s/c)
s

. (3.8)

Whereas without bubbles the pressure fluctuationP can express itself acoustically only as a
quadrupole, it now generates a monopole. The velocity which this acoustic monopole induces
atx is

v = ∂ϕ

∂s

s
s
= −K

{
Ṗ (t − s/c)

s3
+ P̈ (t − s/c)

cs2

}
s. (3.9)

Likewise, the pressure perturbation caused atx by the bubble atr is

p − p0 = −ρ ∂ϕ
∂t
= −Kρ P̈ (t − s/c)

s
. (3.10)

For one realisation the time average of(p − p0)v is found from the product of the right-hand
sides of (3.9) with that of (3.10). Subsequently, we take the ensemble average by multiply-
ing with the probability of finding a bubble centre in a volume element d3r aroundr and
integrating over all possible values ofr . We shall take here the most simple case and take
the probabilityF(r)d3r of finding a bubble centre in d3r to be uniform and equal ton d3r.
Further, since we want to make an estimate of the sound emitted by the turbulent patch, as
Prosperetti [3] calls these regions, we can take it most simply to be a sphere with radiusL.
Then, from (3.1), (3.8)–(3.10), we obtain

〈 (p − p0)v · e〉 = 2π
∫ L

0
nr2 dr

∫ π

0
sinθ dθ(p − p0)v · e

= 2πnρK2
∫ L

0
r2 dr

∫ π

0
sinθ dθ

{
P̈ (t − s/c)

s

}

×
{
Ṗ (t − s/c)

s2
+ P̈ (t − s/c)

cs

}
s · e
s
. (3.11)
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The quantityP̈ Ṗ in (3.11) can be written as

1

2

d

dt
(Ṗ 2)

and does not survive the time averaging. From Figure 1 it follows that

s · e
s
= (x − r cosθ)

(x2− 2xr cosθ + r2)1/2
. (3.12)

Inserting (3.12) into (3.11), we obtain after time averaging and integrating overθ andr,

x2I = 4πnρP̈
2
K2L3

3c
. (3.13)

It is interesting to note that (3.13) is not a so-called far-field approximation, which would
imply thatx � L and would involve, in working out (3.11) approximation based on that.

No such assumption has been made here. The only assumption regarding the geometry is
that the bubbly blob has a spherical shape.

Using the definitions (1.3) and (3.5), we find that the result (3.13) becomes

x2I = 4αP̈
2
a3

0L
3

9γ 2p2
0c

. (3.14)

To give an estimate of the magnitude of the quantity at the right-hand side of (3.14) , we
proceed as CW do and take the pressure fluctuationP = p′ −p0 equal toρuU . A measure for
the time derivative applied to this is the turbulent frequencyu/l. We make no distinction be-
tween Eulerian and Lagrangian frequencies. Inserting this into (3.14) and grouping quantities
together, we have

x2I = 1

9
α(ρuU2L2)

(
ρU2

γp0

)2 (a0

l

)3
(
L

l

)( u
U

)5
M, (3.15)

so the ratio of emitted sound intensity with bubbles to that without bubbles, which we call
here the gainG, is, from (1.1) and (3.15),

G = 1+ 1

9
α

(
ρU2

γp0

)2 (a
l

)3
M−4. (3.16)

As discussed in the previous sections, the gain obtained by CW is(c/cm)
4, which we can also

write, usingc2
m = γp/αρ, preferable top/ρα, since bubbles of radius of a few mm behave

adiabatically rather than isothermally,

G = 1+ α2

(
ρU2

γp0

)
M−4. (3.17)

The difference between (3.16) and (3.17) is that in (3.16) the correction due to the presence
of the bubbles is proportional toα and in (3.17) toα2. Moreover, the (small) quantity(a0/l)

3
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Figure 2. Gain, caused by bubbles, of sound radiation from a turbulent region as measured by Kormanet al. [7].

appears in (3.17). Another difference is that (3.17) holds in the far field, whereas no such
restriction is present for (3.16). It would be interesting to be able to compare these results with
experiments. However, data for which all the values of quantities occurring in these relations
are given are scarce. The present author has found some interesting results in Korman, Roy
and Crum [7]. These authors made measurements in the near field of a turbulent jet in water,
with and without bubbles. In their experiments the void fractionα is of the order of 10−4.
At the nozzle the velocity of the jet is 12 m/s. No values fora0 or for l are given. At these
relatively high velocities, reasonable values fora andl are 10−3 m and 10−2 m, respectively.

Using these values and in additionc = 1500m/s, p0 = 10−5 Pa andγ = 1·4, we find for
(3.16)

G = 1+ 2·7× 104α. (3.18)

Likewise, (3.17) results with the same values in

G = 1+ 2·4× 108α2.

In Figure 2, from [7], are shown their experimental results, for the gainG. It is clear that
this increases withα rather thanα2. Apart from the first few points, the data are reasonably
represented with

G = 1+ 0·22× 104α. (3.19)

This is much smaller than predicted by our result (3.18). However, the magnitude ofG is very
sensitive for the value ofa/l, cf. (3.16). Neither the value ofa nor that ofl is given in [7]. If
we takel equal to 2·3 cm instead of 1 cm, there is complete agreement between the right-hand
sides of (3.18) and (3.19) for the experiments reported in [7]. This emphasises the need for
more experimental data.

The behaviour, proportional toα, which corresponds with the experimental results sum-
marised in (3.19), makes it worthwhile to try to improve on some estimates on which the
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Figure 3. S is the boundary of the turbulent bubbly flow.x is on this surface and receives velocity fluctuations
from a bubble inx+ r , excited by the turbulent pressure fluctuation there.

right-hand side of (3.16) is based. For example, concerning the spherical shape of the tur-
bulent region, the distinction between Eulerian and Lagrangian correlations and the relative
magnitude of inter-bubble distance with respect to turbulent scales. That is left for future work.

At this stage it seems fair to conclude that there is, through the mechanism described here,
an order-α contribution to the radiated noise. Of course, this does not change in any sense the
validity of the results obtained by CW and others, of orderα2, and described in Section 2 of
the present paper.

In this paper we want to conclude with the observation that, while in the work of CW the
term withQ in (2.5) is dominant, this is not necessarily the case for the very dilute suspensions
studied here. This forms the subject of the final section.

4. Additional contributions to the emitted sound

In evaluating〈 (p − p0)v · e〉 (the right-hand side of 3.1) we have calculated the product of
the pressure fluctuations caused by the bubbles with the velocity fluctuations caused by the
same ones. However, a contribution is also made by the original turbulent pressure fluctuations
(p′ − p0), and denoted by us withP , multiplied by the velocity fluctuations produced by the
bubbles, and vice versa. In the Lighthill type of equation (2.6), such contributions would
appear in the termsuiuj in the right-hand side, oneu being the original velocity fluctuation
and the other being induced by the bubbles. Such terms are difficult to estimate in the CW
approach. In CW there was no need for that, since the term withQ overshadows all the others.
For the very dilute case this is not so certain, as we shall now demonstrate.

We start with observing, referring to Figure 1, that in the absence of dissipation, all the
energy flowing through a closed surface containingx also flows through the bounding surface
S of the turbulent volume, in our case a sphere of radiusL. Consider a unit surface area with
centrex now situated on the surface of the turbulent region. Letn be the outward normal atx
and let there be a bubble with centrex+ r (Figure 3). We calculate now

〈 (p − p0)v · n 〉
through a unit surface atx, wherev is the velocity inx induced by a bubble inx+ r . The latter
is always given by the potential (3.8);K andP are defined in (3.5) and (3.6), respectively.
Hence, using (3.9), we find for the intensity radiated in the directionn through a unit surface
S aroundx

−nK
[∫

P(x, t)Ṗ (x+r , t−r/c)n · r d3r
r3

+
∫
P(x, t)P̈ (x+r , t−r/c)n · r d3r

cr2

]
(4.1)
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To evaluate the above integrals, we draw anr, θ, ψ spherical polar axes system with origin
in x, such thatθ is the angle betweenr and the tangent toS and the turbulent region is in
0 < θ < π,0 < ψ < π, a < r < ∞. With this choice the quantityn · r/r in (4.1) becomes
sinθ sinψ and the volume element d3r , becomesr2 sinθ dθ dψ dr.

It is interesting to note that in (4.1) the correlation occurs betweenP in x, t and inx +
r, t − r/c. This correlation is essentially zero beyond a spatial separationl, the integral scale
of the turbulence. The time needed for an acoustic signal to travel this distance,l/c, is so short
with respect to the turbulent timel/u that we can consider the turbulent region as acoustically
compact. Hence we may ignore in (4.1) the time shiftr/c. We assume now, which is often
done in turbulence studies, that the time and spatial dependence ofP can be separated. If this
is the case,

P(x, t)Ṗ (x+ r , t) = 1

2

d

dt
{P(x, t)P (x+ r , t)} (4.2)

P(x, t)Ṗ (x+ r , t) = d

dt
{P(x, t)P (x+ r , t)} −

{
d

dt
P (x, t)

d

dt
P (x+ r , t)

}
. (4.3)

Upon time averaging (the overbar in (4.1)), only the last term on the right-hand side of (4.3)
remains. Performing the time derivation, as in the previous section, by multiplying withu/l,
and assuming a spatial correlation as exp(−r2/l2), which is a reasonable assumption for
homogeneous turbulence (seee.g. Townsend [8]), we write

d

dt
(x, t)

d

dt
P (x+ r , t) = ρ2

(u
l

)2
u2U2 exp(−r2/l2) (4.4)

We introduce this into the second integral on the right-hand side of (4.1) and using the coor-
dinate system described above, we obtain for the intensityI emitted through a unit surface at
x in the directionn,

I = nKρ2
(u
l

)2
u2U2

∫ ∞
a

r2 dr
∫ π

0
dψ

∫ π

0

exp{−(r/ l)2} sin2 θ sinψ dθ

rc
. (4.5)

Using the definition (1.3) ofα and (3.5) ofK and taking the total radiation through a
surfaceL2, rather than a unit surface, we obtain after integration

L2I = 1

8
α(ρuU2L2)

(
ρU2

γp0

)
M
( u
U

)3
exp(−a2/l2). (4.6)

Whereas the emissions discussed so far,i.e. (2.8) found by CW and (3.15) found here, are
proportional toL3, this one is proportional toL2. The reason for that is that the pressure cor-
relation vanishes beyond distances of the orderl. Therefore, the emission through the surface
is proportional toL2l. Also, for this case we can formulate the gainG, that is (following [7])
the sum of the emitted radiation with and without bubbles, divided by the latter. From (1.1)
and (4.6) we find, approximating exp(−a2/l2) by unity

G = 1+ 1

8
α

(
ρU2

γp0

)
M−4

(
U

u

)2
l

L
. (4.7)
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Compared with the right-hand side of (3.17), giving the corresponding result for the cor-
relation between pressure and velocity fluctuations coming from the same bubbles, the most
important difference is the dependence onl/L. If we take values, pertaining to the experiments
by [7] and assume for(U/u) the value 10, we obtain

G = 1+ 3× 109 l

L
α. (4.8)

With l = 1 cm andL = 1 km, the right-hand side of (4.8) is still comparable with that of
(3.19). This calculation shows that the interaction between the original turbulence and the
additional fluctuations brought about by the bubbles deserves further study. This should take
into account the nonlinear effects which are (S. Lele, private communication) of importance
near the boundary of the turbulent blob.

Dedication

This paper is dedicated to my friend and colleague Pieter Zandbergen, at the occasion of his
65th birthday. My congratulations are accompanied by wishing him many years of good health
to come.
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